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Wave resistance to vertical motion in a stratified fluid 

By F. W. G. WARREN 
Imperial College, London 

(Received 14 March 1959, and in revised form 12 July 1959) 

When a body moves through a stratified fluid, i.e. one whose density decreases 
upwards, gravity waves are set up and this causes a resistance to motion. An 
axisymmetric case is considered in which a body moves steadily and vertically 
through a fluid whose density decreases exponentially upwards. The fluid is 
supposed perfect, incompressible, and unbounded in all directions. The equations 
of motion are linearized, and with a fairly general initial motion of the surrounding 
fluid, the limit of the solution as t -+ co is evaluated. Transform methods are used 
to solve the equation of motion, and the methods of steepest descents and 
stationary phase are used to obtain approximate solutions. 

Streamlines and the distortion of the constant density levels for a spindle- 
shaped body are shown. The curves of resistance against a function of the 
velocity for the circular cylinder, the sphere, and a spindle-shaped body are also 
given. A criterion is given for when the maximum wave resistance for a sphere 
may be expected, and an estimate of this maximum resistance is made. 

1. Introduction 
The problem of a body rising through a stratified fluid has applications in the 

study of buoyant convection currents rising through stable surroundings. This 
type of motion frequently occurs in the atmosphere when a thermal rises through 
a cumulus cloud. In  this case the expansion of the thermal during its ascent 
causes a condensation of the water vapour within it. The release of latent heat 
warms the thermal, and this causes a further expansion and a further decrease in 
density of the rising air mass. This offsets the loss in buoyancy as the thermal 
rises to higher, less dense regions, and the upward motion is maintained (Scorer 
1958). For the purposes of this problem, the atmosphere may be regarded as an 
incompressible fluid whose density decreases upwards, and whose static stability 
parameter is the same as that of the atmosphere (Scorer 1950, 1968); and the 
thermal can be taken to have a fixed, spherical shape. What is required is a 
measure of the energy used to generate the gravity waves set up in the stable 
surroundings of the cumulus cloud as the thermal rises, so that the importance 
of this effect on the motion and growth of the thermal can be estimated. This is 
obtained in $10. 

The problem considered in this paper may also be regarded as a first approach 
to the study of the dispersion of stirring motions into gravity waves. A criterion is 
suggested for when the maximum amount of energy is used to make waves, and 
hence for when the maximum amount of energy is absorbed and dispersed by 
gravity waves. 
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2. The equation of motion 

linear equation governing the stream function of the perturbation. 
Perturbation methods are applied to the basic equations of flow to obtain a 

The notation employed, is, using, cylindrical co-ordinates: 

z = height (the z-axis is coincident with that of the body), 
T = horizontal co-ordinate, 

(u, w) = velooity of the fluid, 
W = steady vertical velocity of the body (positive upwards), 

/3 = static stability parameter = -- - = constant > 0, 1 dP0 
Po dz 

where po(z) = undisturbed density, 
a2 = SP, 

and 

If we write 

k, = I;l. 
a ~a = %+U-+(w- a W)- a 

ar az’ 
the equations of motion relative to axes fixed in the body are 

DU iap 
0, -+-- = 

Dt par 

and 

Since the fluid is incompressible 

and the equation of continuity reduces to 

a a - (TU) +- (mu) = 0. aT az (4) 

Equation (4) implies the existence of a stream function, +(r, z, t ) ,  such that 

We now write p = po +p’ and p = po +p‘, where p’ and p’ are small perturba- 
tions of the undisturbed density and pressure, po and po, respectively. If we 
substitute po +p’ for p, and po+p‘ for p in equations (l) ,  (2) and (3) and neglect 
products of u, w, p‘, p’ and their derivatives, these three equations become 

(1)’ 

(2)’ 

(3)’ and 
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The elimination of p’ and p’ from these equations and the substitution for u 
and w in terms of $ leads to the following equation of motion: 

The first two terms in the curly brackets represent the vorticity, the term con- 
taining /3 is an inertia term which arises because the density decreases upwards, 
and the last term represents the effect of gravity. 

If it assumed that a steady motion exists for which a/at E 0, then equation (5) 

Equation (5)’ has the same form for both W and - W. Thus the equation of 
steady motion makes no distinction between ascent and descent at equal speeds. 
The assumption that there is no perturbation of the fluid at large distances from 
the body, together with the boundary condition at the surface of the body, leads 
to a solution of equation (5)’ in which a wave pattern appears below the body. 
This seems unreasonable if the body is in descent. On the other hand, if the 
assumption of no perturbation at infinity is dropped, the solution of equation (6)’ 
is indeterminate. In some c&88s it may be argued that the term containing 1 may 
be neglected because it is small compared with the other terms of equations (6) 
and (6)’. These equations then become 

and 

respectively. The same equations are obtained ifp and g are regarded as variable 
pirameters, and p --f 0, g --f 00, in such a way that a2 remains constant. 

However, the solution of the equation of steady motion (6)’ is indeterminate, 
even if the assumption of no perturbation at infinity is made. Also the circum- 
stances in which the term in equation (6) containing may be neglected do not 
seem obvious. For these reasons it is better to use the equation of unsteady 
motion (5 ) ,  and with a general type of initial motion to look for a limiting value of 
the solution as t -+ a. 

3. The boundary conditions 
If line sources and sinks are placed on the z-axis, the separating streamlines may 

be regarded, in the usual manner, as the outline of a body. The strength of these 
line sources may be written conveniently as 

the accent denoting differentiation with respect to z. At points near the axis, 
- 2nWj’(z)f(z), 

(7) 
W 
2 +(OY 2, t) = - - {f(Z)}8 = +a, say, and hence 

14-2 
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where $ is defined so that the constant of integration is zero. If the axisymmetric 
body whose shape is given by r, = f(z) is a slender one, so that ra is small, then 

and 

However, if ru = f ( z )  is a boundary of the fluid, then 

Hence equation (7) holds for a body whose shape is given approximately by 
r, = f ( x ) ,  if the body is a slender one. 

The flow pattern a t  t = 0 is given (compatibly) as 

The initial motion described by $o and go is taken to be of a general nature and 
may contain waves. Alternatively, the body may be started suddenly from rest 
in a still fluid. The solution of the equation of impulsive motion (i.e. equation (5)' 
with g = 0) is equivalent to a potential flow solution multiplied by a factor 
cos @-. Thus the motion in the horizontal direction has a 'wavelength' of Zip; 
but this seems of theoretical interest only since the amplitude of the motion dies 
away rapidly in an exponential manner. 

4. The transformation of the equation of motion 

direction and a Hankel-like transform in the horizontal direction: 
Equation (5) is transformed by means of a Fourier transform in the vertical 

X(m, k ,  t )  = dr J,(mr) Y ( r ,  k,  t ) .  loW 
The transforms corresponding to qk0, $o and @a are 

y o ,  xo; 9 0 ,  x o  and Y,(k) = W O ,  k,  t )  
respectively. If we multiply equation (5) by eikz and integrate with respect to 
x from - 00 to + 00, and assume $ vanishes at & 00, we obtain 

If this equation is multiplied by rJ,(mr) and integrated with respect to r from 0 
to 00, it  becomes 

[ ( ~ + i W k ) 2 ( k 2 - i , 8 k + m 2 ) + a  m 21 x = m(cx2- W2k2)YU(k).  (11) 
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To derive equation (1 l), it haa been assumed that Jl(mr) (a/&) Y ( r ,  k, t )  vanishes 
at r = 0 and r = co and that Y ( r ,  k,  t )  vanishes at  r = co; it then follows that 

= mY(0, k, t )  -m2x(m, k, t ) .  

Equation (11) is an ordinary differential equation with t as the independent 
variable. Its solution may be written as the sum of a particular integral and a 
complementary function: x = xl+xz. Correspondingly, Y = Yl+Y, and 
11- = 111+11-2. 

5. The particular integral 
The particular integral of equation (1 1) is obtained by putting a/at = 0, since 

the right-hand side is independent of time. This gives x1 = mY,/(m2 - A2), where 
kr' - ipka 

A2 = 
kt-k2 * 

FIGURE 1. Path for h in the complex A-plane as k varies. 

The inverse of the transformation (10) is 
W 

Y ( r , k , t )  = r [ dmmJ,(rm)x(m,k,t). 

Hence, 

This integral is evaluated in Watson (1944, p. 424).t Substituting its value, we 
obtain 

where Im(A) > 0. 
Y1(r, k ,  t )  = (&i) r;W$')(rA) Y a ( k ) ,  

taken round an infinite semicircle in the upper half-plane 

givea the results &nmeditttely. 
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The inverse of the transform (9) then gives 

where Im (A) > 0. The path of A, aa k varies from - 00 to + 00, is shown in figure 1. 
If /3/ko 4 1, this path lies approximately on the real and imaginary axes. If it is 
assumed that the body is symmetrical about its centre 80 that r, = f (2) = f( - z), 
then Y, (k )  is an even function of k. $, may then be written 

where 

and 

6. The complementary function 
Since the particular integral is independent of time, the behaviour of $ aa 

t --f 00 depends solely upon the behaviour of $, M t+m. The complementary 
function is obtained if we write Y , ( k )  = 0 in equation (11). This gives 

xz = A,@, m) e y l f  +A,(&, m) eYnf,  

where A, and A, are functions of k and m, and y, and yz are the roots of 

(y + iWk)2 (k2 - ipk + m2) + a2m2 = 0. (13) 

At t = 0, x and ax/at have the given values xo and xo, respectively, and A, and A, 
are found from these conditions. We thus obtain 

A,  = ["/(XO - Xl) - i o l / " Y 2  - 711, 
A2 = ~ ~ 1 ~ x o - X 1 ~ - 3 i o l / ~ " / ~ - Y 2 l ~  

The inverse of the transforms (8) and (9) gives 

A transformation to polar co-ordinates is now made, so that one range of 
integration is finite. We write k = p sin 8, m = p COB 0 and thus obtain 

where 
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We write 

Similarly the notations Ii+) and I&-) are used for integrals containing A,. 
To find the limit of the integrals as t + co, we consider the p-integration first, 

and deform the paths of integration in the complex p-plane to regions where 
Re (T,,~) < 0.t Two cases arise, corresponding to ascent and descent of the body. 
For ascent, it is found that if certain assumptions about the initial conditions axe 
made, no poles are crossed in the deformation in the p-plane. The whole path may 
be deformed to regions where Re (y,,,) < 0. Hence in this case the integrals tend 
to zero as t+m. For the case of descent, the same assumptions are made, but 
poles of x, are crossed at points where y = 0, and the residues give rise to a steady 
term as t --f co. A difficulty arises for the integrals I\-) and Ia+) because it is not 
possible to deform the whole of the path in the p-plane to regions where 

Re(y,,,) -= 0. 

The second integration with respect to 0 then shows that these integrals do not 
have limits as t --f 00. However, if the assumption is made that B/ko < 1 this 
difficulty is partly overcome in the sense that the integrals I$-) and I&+) taken 
dong the deformed paths remain negligible for a certain interval of time. During 
this time the integrals are approximately equal to the residue terms from the poles 
crossed by the deformations. From these residues the limit Of +, is obtained. Thus 
it may be shown that 

I 0, if W > O \  

t+w lim ” = \,/2gjoko dk Y J k )  rAJl(rA) sin kz if W c 0. 

The remainder of this section gives a proof of the expression (14) and discusses 
some points which arise from the preceding paragraph. 

CaseI. Ascent w > 0 

It is assumed that A, and A,  are O(exp[b )Impl]p-3-A) as 1pI + 00, where 
A > 0 and b 2 0. Equation (13) shows that ify = 0, then m2 = ha. Hence x, has 
poles at points where y = 0, A,  has a pole at y, = 0 and A, has a pole at 7, = 0. 
Figure 2 shows the p-plane. Regions where Re (y )  < 0 are shaded, and the poles 
of at y,,, = 0 are shown at  the points marked I?. y has a pole at p = issin 8 
and a branch point at the origin. A cut is made along the imaginary p-axis to 
join these points, so that y is single valued in the cut plane. 

We consider the upper bounds of the integrandsof the integrals I$+), etc., taken 
along the deformed paths. Upper bounds for the integrals taken along the 
deformed paths may then be found. The range of the 6-integration is divided into 
the ranges (0, & 8 )  and ( k E ,  k @), where E is a small positive number. 

t The transformetion p +p(y) is not a simple one and it is better to keep to the inde- 
pendent vlviablee (p, 0). 
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Discussion of th integral I;+) 

(i) No deformation is made in the interval 0 < 8 < e, and it may be shown that I 1; dp 1 < M ,  for some Gxed M .  

(ii) In E < 8 < ?pr, the path of integration in the p-plane is deformed as shown 
in Ggure 3. 

FIUURE 2. Case I. Paths of Re ( y )  = 0 in the complex p-plane. 

FIGURE 3. Case I. Deformation for 1:') in 6 c 8 c &r. 

It follows that 

by suitable choice of R,, and that 

if Wt sin8 > 2(r + IzI + b),  where K is a fixed number. 
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Discussion of th integral I:-). 
(i) In  the interval - e < 8 < 0 the path is deformed as shown in figure 4. 

It may be shown that dp < M ecko(l+lal+@, where c is some constant which 

depends on /? and k, only. 
(ii) In  - &r < 8 < - e,  the deformation is similar to that used in I$+), see 

figure 5. 

lD-o.w I 
I 

FIUTJRE 4. Case I. Deformation for Ii-) in - E < 0 < 0. 

F~arrae 5. Cese I. Deformation for I$-) in -& < 0 < - E .  

In  this case i t  may be shown that 

Similar results hold for the integrals 1i.l and I;-), when the paths are deformed 
in a similar manner. If we collect these results for the integrals I\+), etc., and 
consider upper bounds for varying 8, we obtain the following upper limit for the 
&integration : 

where Wt,sine > 2(r+ IzI + b ) .  
For poles crossed by the deformations there will be contributions from the 

residues, which give terms like 
L J-+ae o eypt. 
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Here 0 is some function of 8 and a pole occurs at  p = pp(8) ,  say, where 

If Re (7,) c 0, the expression (16) will decrease with time, but if Re ( y p )  > 0 (e.g. 
for the deformation used for I$,-)), this may not be so. In general, if it is possible to 
deform the path of integration in the &plane to regions where Re (yp)  < 0 (where 
y p  is such that Re (yp( & ?p)) Q 0), the expression (16) will decrease with time. 
However, this deformation is not always possible, and, for example, we may 
have Im(yp) = constant = WZ, say, and Re(yp) = 0. There is then a steady 
fluctuation present throughout the motion. This type of motion is easier to see if 
we use equation (6) .  The assumption that 

+ K e--fb rJ,(mr) etm 

Y = Y(P,, 8)  = YJ@. 

then gives ( E  + (k2 + m2) = ktm2. (13') 

Hence equation (6) has a solution 

+ = regmloadkYa(k)  e-~k%.d,(rm), 

where m satisfies equation (13') and 1 is fixed. 
This fluctuating type of motion does not seem to be of practical interest since it 

must be present in the initial conditions and it is not easy to see how this motion 
could arise in the first instance, unless a fluctuating type of disturbance were 
present. 

With regard to the &integration for the residues in the case where 

Im (7,) = constant, Re ('yJ > 0, 

the fluctuation would increase with time. In this case the linear theory is inade- 
quate to say what eventually happens. 

If it is now assumed that poles of the above description do not occur in A, and 
A, and hence in xo and jlo, i.e. that certain types of waves are absent from the 
initial condition, then 

This holds for all (r,, z,, t )  if rl + lzll < r + IzI and t > to. Hence $, -+ 0 as t -+ co if 
W > 0 for all regions of the flow. This result holds for any /3 > 0. 

Case II. Deacent W < 0 

The same methods are used as in Case I, but it is no longer possible to deform the 
paths of integrations for the integrals I$-) andI&+) in the p-plane so that they lie 
completely in regions where Re(y) < 0. The singularities of y prevent this. 
Figure 6, which corresponds to figure 2 of Case I, shows the p-plane. 

The paths for the integrals II-1 and IL+) are deformed as shown in figures 8,9 
and 10. In the regions were Re(?) > 0, the paths are deformed so as to pass 
through a col in the method of steepest descent. An upper bound for the 
contributions from segments of the paths where Re(y) > 0 is then made. The 
track of the cola for varying 19 is shown in figure 7. 
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The position of the cols is given by p = pc(8),  say, and at these points 

Y = Y(P0 8)  = Y c ( 4  

We write 

and 

Then if 181 > 8*, it may be shown that two cols lie on the cut; and that if 181 > 8** 
both zeros of y lie on the cut. We suppose that #? and g are variable parameters 

cosec 8* cot 8* = 3J3 - - B (in > e* > 0)  

cosec 8** cot 8** = - - B (in > e** > 0) .  

8 ko 

2 k0 

FIGURE 6. Case 11. Paths of Re(?) = 0 in &e complex p-plane. 

FIGURE 7. Cese II. Path of the cols for varying 0 in the complex p-plane. 

with a, ko and W held fixed, and that 0 < B/ko 4 1. The range of the 8-integration 
is divided into the ranges (0, & 8); ( f 8 f &r T 8);  and ( k in T S, & in); where E 

and 6 are small positive numbers. /3 is chosen so that +n-8* < S in order to 
restrict the contributions from the paths in regions where Re (7) > 0. 

Discussion of the integral I\+) 
(i) There is no deformation of the path in 0 < 8 < E and it may be shown that 
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(5) In  E c 8 < &r, the path is deformed to Re ( y )  = 0. On this path it may be 

dYldP > 1. 
shown that 

With the assumption that A(p, 0)  is of bounded variation on any finite length of 
the path, it follows that 

lml 

Similar results hold for I&-). 

I 

F ~ a m  8. Case II. Deformation for Ih') in 0 < 0 < E. 

Discussion of the integral &+) 
(a) Contributions from the paths which lie in regions where Re (y )  6 0 

(i) I n  0 c 8 < E, the path is deformed as shown in figure 8. 
'It may be shown that 

dp < ddexp[ck,(r+ 1.1 +b) ] .  Is,,,,., I 
(ii) I n  E < 8 < - 8, the path is deformed &B in figure 9. Here 

as may be shown by a discussion similar to that used above for the integral 
I$+', (ii). 

If p/ko 4 sin 6, it may be shown that 

and that the integrand is uniformly bounded with respect to p and 0 on the 
deformed path. 

It then follows that 

wt sine 9 

where \OZ\ = k,, say. 
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As in Case I, integral I;+), it may also be shown that 

(iii) In &r - 6 < 0 < in, the paths are deformed in the three subintervals 

in-s  < e < e*; e* < e < e**; e** < e < +n; 

FIGURE 9. Case 11. Deformation for I&+) in 6 < 0 < +T. 

r 
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<Q.cQ** ,y**<ec 

F I Q ~ ~ E :  10. Cese II. Various deformations for I&+’ in +n-6 < 8 < +v. 

asahownin figure 10. For points on the segment Yo0 of the deformed path, 
where 10 Y I = k,, it may be shown that 

Similar arguments hold for dp as in (ii) above. ILn I 
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(b) Contr ibuth  from the pa.i?hs which lie in regkns where Re (y) 2 0 

If we consider the path of the col, we may show that in the interval 

0 < 6 < 6*, Re(y,/W) < 5,/(Bk0); 
6* < 8 < +T, Re (y, /W) < 88. and that in 

less than 
(i) In 0 < 6 < $7 - 6, it may be shown that the length of the path XY is 

(ii) In ?pr - 6 < 8 < 4gr, the length of the path in the region where 
Kd(Bk0)- 

Re(y) z 0 is O(ko). 

It may also be shown that the integrand is uniformly bounded with respect to 
and 6 on the deformed paths. From these results it may then be shown that 

[ Iobd6' JhpdPl < K[d(Bko) + 61exp Mo(r + 121 +b)l exp PWd(Bk0) tl. 

The integral I\-) may be discussed in a manner similar to I&+). 
From the above results for the integrdsI\+), etc., we'obtain the following upper 

limit for the 6-integration: 

This holds for all 0 < 1 < B, for some B > 0. (c does not increase ifp decreaaes.) 
It also holds for all (r,, zl,t), where r,+ lzll < r +  121, and t > to. 

If we choose t, % to and B such that J(Bko) Q 1/5 Wt, (i.e. J(B/ko) < 1/5at,), 
then 

(16) dp < Kexp [cko(r + IzI + b)] (36 + 46) I/-:?Ipatb I 
during some interval of time (t l ,  t,), t ,  > t,. If ( B ,  6) is chosen so that the expression 
on the right-hand side of (16) is small compared with the average value of 

I $, + residue terms I t 
in the region r,+ lzll < r +  121, then 

may be neglected in the interval t ,  .c t < t,. This interval may be called a ' quaai- 

limit ' interval. An estimate of $ - d6' dp for large t may be found from 
~ 4-;,, som 

the asymptotic expression of J 
the col gives the first n-terms in the form$ 

dp. The method of steepest descent through 
XP 

t 
8 A mcuMcation is needed at 8 = 8* since dyldp = 0 there. 

end the residue tenne change little as B --+ 0. 
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where the 0, are functions of 8, and Re (ye( k in)) = Re (yc (0))  = 0. A different 
form of deformation of the path in the p-plane occurs at 8 = 8* and hence not all 
the 0, are holomorphic at this point. Hence complete deformation of the path of 
integration in the &plane to regions where Re (ye) < 0 is not possible,t and 

gives terms 

where r is some integer. Hence I$,l diverges as t+ 00, 

increws without limit. 
d eventually t h  motion 

(d (b )  

FIUDRE 11. Path of integration for k, (a), and A, (b) .  

The msumption that second-order terms are small no longer holds at this stage 
and the linear theory seems inadequate. Physically, the medium is a dispersive 
one in which local disturbances are propagated outwards in all directions. The 
gradually increasing inertia forces retard the propagation to deeper levels, and 
waves ahead cannot disperse so rapidly in descent as in ascent. 

S i d a z  assumptions concerning the poles of xo and go are made aa in Case I. In 
the case where the motion is started suddenly from rest, a pole of xo occurs at 
p = iB sin 8. It seems better to treat this pole separately, since the arguments used 
earlier would not hold in this caae. 

With the above msumptions, the limit of the complementary function in the 
' quasi-limit ' interval is found from the residues of the poles of x1 at y = 0, which 
are crossed by the deformations used for I$-) and I&+). If we substitute for the 
residues, after a little manipulation we obtain 

where L is the path in the k-plane shown in figure 11. Figure 1 1 also shows the 
corresponding path for A. 

If Br < 1 and /3z g 1, then these paths may be taken to lie approximately on the 
real axes. With the msumption that Y a ( k )  is even, this leads to the expression 

t Other patha may be choaen, but a different form of deformation occurs at some stage 
because the contours of y change their form at 8 = 8* and at B = 8**. 
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In conclusion, for Case 11, if plk0 4 1, there is a region around the body where, far 
a given time interval, ljlz is given by the expression (17). The length of thisinterval 
becomes infinite as /31ko -+ 0. 

7. The complete solution 
The results of $05 and 6 give the following expression for @ as t -+ co: 

@ = Im Jrn dk F(k)  rMZf)(rA) exp [i (sgn W) kz], 
2 0  

where F(k)  = ~omdzcos  kz{f(z)}2.  

Hence the wave pattern produced by a descending body is the same as that 
produced by an ascending one. The waves are downstream in each case. When the 
initial conditions are those of a steady, numerically greater velocity, and $o ia 
given by expression (1 S), it may be shown that the same wave pattern eventually 
emerges. 

Methods similar to those used in $5  4-6, may be employed to solve equation (6). 
There is no essential singularity of the integrand in the corresponding double 
integral expression for @z. The paths of Re (7) = 0 coincide with the real p-axis. 
The poles of x1 also occur on the real p-axis, and the double integral expressions 
for $rl and $z are improper integrals. If principal values of the integrals are taken 
we obtain after one integration 

= 9 Im jorn dk F(k )  rA@)(rA) cos kz 

and lim ljfZ = - Im dk F(k)  rAH‘,l)(rA) i(sgn W )  sin kz. 
t+a, a s,” 

These two results differ from the corresponding expressions when /3 + 0. However, 
the sum @ = @l + @z is the same in both cases, and in this sense the limit of the 
solution of equation ( 5 )  as /3 -+ 0 is the same as the solution of the limiting form of 
equation (5) as p -+ 0. 

8. Asymptotic approximation to the motion 
An asymptotic expression for the streamlines and the distortion of the constant 

density levels can be obtained by the method of steepest descents. The displace- 
ment of the streamlines is given approximately by 

and the displacement Apo of the constant density levels by 

O 0 w  
Apo = Ja d z y .  

If we write k = ko sin g and use the asymptotic expression for Hc,l,(z) 
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then expression (18) yields 

Im dcP(ko sin E )  sin E cost f exp [iko sin ~ ( z  + r tan 6 )  - ~7ri1, A s N - J m  s, 
when W > 0. bl is the path shown in figure 12. It is deformed to pass through the 
col at  C. This col contributes an exponentially small term to the asymptotic 
approximation to A, and is omitted. It may be regarded aa the potential flow 
displacement. 

Saddle point 

f i a m  12. Path of integration for 6. 

When z c 0 a saddle point appears on the red axis between the origin and 
(in, 0). The method of stationary phase then gives 

1 koP(ko sin t*) 
rJ(Z+sin 5 ) 

zko sin <* A, N -  a * sin E* cos26* cos ( + cos2 f * )  if z < o 

N O  if z > O  

for the asymptotic value of A,. Here f* satisfies the equation dG/dE = 0, where 

and where z/r  = tan#, say. This gives 

or 

tan3 E* + 2 tan E* + z/r  = 0 

sin 26* + 2 tan (E* - #) = 0. 

A similar result holds for APo: 

N O  if z > O .  

If W < 0 the reverse holds with A, and Apo asymptotically zero if z < 0. 
16 Fluid Mech. 7 
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FIQTJRE 13. streemlines for a spindle-shaped body. 
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FIUURE 14. Deformation of the constant density levels 
for a spindle-eheped body. 
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Iff;* is used aa a parameter we may write the displacements as 

1 
- x amplitude factor x COB ((r or z )  x phase factor}. 
r 

The results for a spindle-shaped body whose shape is given by 
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n2 
f (z)  = acos- if IzI < b 

2b 
= o  if 1.1 > b 

have been plotted and are shown in the figures 13 and 14. a and b are the half- 
breadth and half-length of the body and k;l has been used as a unit length to 
measure.distances from the body. aako has been used as a unit displacement to 
draw the streamlines and the constant density levels. It may be shown that the 
slopes of the curves joining the crests and troughs (shown dotted in the figures) 
are asymptotically - cot [* so that the approximate rate at which the disturbance 
spreads outwards is +rW. A value of t n  for bk, was used in the calculations. 

9. The wave resistance 

the pressures on its surface. If the static thrust is neglected the upthrust is 
The wave resistance to the motion of the body is found from a consideration of 

0% R = 2n  dzpsinq- dz f (z), 
j:b 

aa shown in figure 15. p is the perturbed pressure. Euler’s equation of motion 
relative to the body for horizontal motion under steady conditions is 

when products of small quantities have been dropped. The assumption that 
1/p N l/po gives 

P = W P o  jmdra2@ r s = -  V p / o m d k  kzF(k) Hg)(rA) exp [i(sgn W) kz]. 

Further, we aasume that the body is slender so that &/dz N 1 and sin7 2:f’(z). 
If we write po(z) 2: po(l  -pz), where po = density at z = 0, then we obtain 

b 
dz(1- pz)f(z)f’(z) Sm dk kZF(k) exp [i(sgn W) kz] I&?@&). R 

= Irn/-b 0 

Since f (2)  is even, this becomes 

R 
(sgn V) S’dk k2P(k) jobdzf’(z)f(z) sin kz Jo(rahl) 2.rrp,w2= 0 

-/lImjomdkk2P(k) /obdzf’(z)f(z) cos kzHg)(r,R). 

The latter integral represents the effect of the change in virtual mass, and is 
16-2 
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neglected because it is multiplied by /3. If ruhl is small over a large part of the 
range 0 < k < ko, so that Jo(ruhl) N 1, then approximately 

R = - (SP W )  rppo W 2  dk P{B’(k)}’, 
since j o d z y ( z ) f ( z ) s i n k z  = dzcoskz{f(z)}2 loko = - - P ( k ) .  k 

2 

FIUTJBE 16. Calculation of 
the wave resistance. 

Cosine-shaped body 

0 4  0 8  1.2 1.6 2.0 24 2.8 32  36  4.0 
V +  

FIUTJIW 16. Curves of R, against v. 
Wave resistance 

R, = 
P g P o  

, 

If the shape of the body is written aa r, = afl(z/b),  where a = half-breadth and 
b = half-width of the body, the wive resistance is given by 

dkks{Fl(k)}2 = Rd, say, 
R 

(19) 

where v ,  = bko/r  and 

P l ( k )  = s,’dz cos kz{fi(z)}2. 

For small v, Rd cc v2. In manycmes the right-hand side of equation (19) will tend 
to zero aa v+ 00, and hence, in general there will be some condition of maximum 
resistance. 

Wave resistance curves for the spindle-shaped body, the sphere and the 
circular cylinder (whose shape is given byf(z) = a, if IzI < b , f ( z )  = 0 if IzI > b),  
are shown plotted against v, that is against a function of velocity, in figure 16. 
Many assumptions break down for the circular cylinder and its resistance curve 
is of theoretical interest only. 

10. Applications and conclusions 

mately, by Scorer (1957) 
The rise of a thermal through the atmosphere has a velocity given, approxi- 

W = J(ffB4, 
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where B = buoyancy = density difference/density, and 2a = width of the 
thermal. To estimate the wave resistance it is msumed that the thermal is a 
sphere whose diameter is the width of the thermal. The ratio of the wave resistance 
to the buoyancy is then 

resistance - - ?$R,( J&) = o-05@)', 
buoyancy 4n B 

roughly, ifap/B < 3. For the following values of the constants (which may occur 
in the atmosphere) 

a = 104cm., B = 10-2, p = 10-7~m-1, 

this ratio is about 0.0005. Thus in these cases the wave resistance to motion is 
negligible. This remains true over a large range of values of B and p. On the 
other hand, the following values of the constants: 

u = 105cm, B = 3.10-3, p = 10-7cm-1, 

give a ratio of about 0.6. 
As a rough guide, a sphere will experience most wave resistance at a speed 

given by 
*=3. 
W 

The ratio of the wave resistance to the weight of the displaced fluid is then 
about &at?, where a is the radius of the sphere. 

Hence in general the dispersion of energy due to wave motion is small. How- 
ever, when the situation is specially favourable to the surrounding fluid, and the 
forces involved are small, this dispersion may play a major part in the behaviour 
of the fluid, a~ in the case of the larger thermal with a smaller buoyancy (e.g. 
towards the end of the ascent). 

similar manner, it may also be possible for these waves to affect the 
behaviour of turbulent eddies. For instance, if the eddies are large, and if their 
outer regions move slowly, a conaiderable proportion of energy may be dispersed 
by gravity waves. A criterion for this energy disperion to be a maximum would be 

In 

where the number n depends on the shape of the eddy, a is a typical dimension, 
say the eddy size, and W a velocity typical of its outer regions. 

I would like to express my thanks to Dr R. S. Scorer for the very many helpful 
discussions and guidance he has given me throughout this work. 
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